Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 11(1): 5047, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-841208

ABSTRACT

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Peptide Fragments/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/enzymology , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Drug Design , Mass Spectrometry , Models, Molecular , Peptide Fragments/metabolism , Protein Conformation , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Static Electricity , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL